題2(92中正資管)
The following are eight consecutive weeks' earnings (in dollars) of three door-to door vacuum cleaner salepersons employed by a given firm:
題2(92中正資管)
The following are eight consecutive weeks' earnings (in dollars) of three door-to door vacuum cleaner salepersons employed by a given firm:
題233(清大科管) The sales volume (In thousand dollars) for three different types of in-store promotions is shown below. To test the effect of in-store promotion on sales please fill the one-way ANOVA table. Sales Volume for Three of Store Promotions Promotion-Type 1: 3 4 5 6 Promotion-Type 2: 6 7 8 9 Promotion-Type 3: 4 4 8 8
ANOVE TABLE
Source | df | SS | MS | F |
Treatment | (A) | (D) | (G) | (I) |
Error | (B) | (E) | (H) | |
Total | (C) | (F) |
三種不同類型的店內促銷的銷售額(以千美元計)如下所示。 要測試店內促銷對銷售的影響,請填寫單向ANOVA分析表。
為調查父母對玩具是否標示安全玩具的看法,並選擇某一家玩具調查十對父母,其中五對有標示安全玩具,有五對未標示,並分別詢問父與母對該玩具之購買意願,1表示意願很低,5表示意願很高,資料如下:
樣本 | 是否標是安全玩具 | 父親的購買意願 | 母親的購買意願 |
1 | 1 | 5 | 4 |
2 | 1 | 4 | 4 |
3 | 1 | 3 | 5 |
4 | 1 | 4 | 5 |
5 | 1 | 4 | 3 |
6 | 0 | 3 | 3 |
7 | 0 | 2 | 4 |
8 | 0 | 4 | 3 |
9 | 0 | 2 | 2 |
10 | 0 | 1 | 1 |
*1表標示,0表未標示
(92朝陽企管)
How many times would you expect to roll a fair die before all 6 sides appreared at least once?
假設汽車到達停車場的車數(事件)滿足波氏公設。 ⑴已知一小時平均有10部車到達,令X為半小時到達的車數,則X之機 率函數為何? (2)上題(1)之任意二部車的間隔時間為隨機變數設定為Y,其機至函數為 何?(5%)
A 99% confidence interval estimate can be interpreted to mean that (A)lf all possible samples are taken and confidence interval estimates are developed, 99% of them would include the true population mean somewhere within their interval (B)We have 99% confidence that we have selected a sample whose interval does include the population mean (C)Both of the above (D)None of the above 99% 的信賴區間估計可以解釋為 (A) 如果採集了所有可能的樣本並得出了信賴區間估計值,那麼 99% 的樣本將包括其區間內某處的真實母體平均值 (B) 我們有 99% 的信賴度認為我們選擇了一個樣本,其區間確實包含母體平均值 (C) 以上兩者 (D) 以上都不是 (台大商研) 答:(C) For the following statements about a confidence interval (CI), which is (are) true? (a) The narrower the CI, the better, for the same level of confidence. (b) The narrower the CI, the higher the confidence level. (c) A 95% CI for the mean of population implies a .95 probability that the mean of the population lies in that interval. (A) (a)(b)(c) (B) (a)(c) (C) (a) (E) none (成大財金) 對於以下關於置信區間 (CI) 的陳述,哪個是(是)真的? (a) 對於相同的信賴水平,CI 越窄越好。 (b) CI 越窄,信賴水平越高。 (c) 母體平均數的 95% CI 意味著 0.95 的機率 母體平均數位於該區間內。 答:(C) (a) (b) CI 越窄,信賴水平越低 (c) 母體平均數的 95% CI 並非意味著 0.95 的機率母體平均數位於該區間內。相反,我們不知道母體平均數有多少機率會落在信賴區間。譬如,我們預測人類哪時候滅亡,五十年後、一百年後、一千年後甚至一億年後,當然區間估計範圍拉的越大,譬如估計一億年後人類滅亡,估計準確度就降低,所以並非區間拉的越大機率越大。The 95% confidence interval is a range of values that you can be 95% confident contains the true mean of the population. Which of the following statements about confidence interval is true? (A)For a certain level of confidence, we would prefer a wide confidence interval over a narrow confidence interval because the wide confidence interval is more likely to contain the true value of the population parameter (B)A good confidence interval has a large width and a high level of confidence (C)Suppose we construct a two-sided and a one-sided confidence intervals for the population mean. In each case, the level of confidence is 1-a. The lower confidence limit for the two-sided interval exceeds the lower confidence limit for the one-sided interval (D)Other things being equal, we could always increase sample size to reduce the width of confidence interval (E) None of the above answer is correct 下列關於信賴區間的說法正確的是? (A) 對於一定的信賴水準,我們更喜歡寬信賴區間而不是窄信賴區間,因為寬信賴區間更有可能包含母體平均數的真實值 (B) 一個好的信賴區間具有較大的寬度和較高的信賴水準 (C) 假設我們為母體平均值構建了一個雙尾和一個雙尾信賴區間。 在每種情況下,信賴水準都是 1-a。 兩側區間的信賴下限超過單側區間的信賴下限 (D) 在其他條件相同的情況下,我們總是可以增加樣本量以減少置信區間的寬度 (E) 以上答案都不正確 (中正企管) 答:(D) (A)錯,信賴區間越窄估計越精確 (B)錯,區間越窄越精確,雖然信賴水準越低區間越窄,但可靠度也會降低,估計範圍變小,並非好方法。應該增加樣本數使區間變窄,樣本越大母體參數容易穩定集中在較小範圍。 (C)兩側區間的信賴下限低於單側區間的信賴下限 一家雜誌社欲知其讀者的平均年齡,以作為雜誌內容走向的參考,根據其 對訂戶抽查所得的讀者平均年齡為 35 歲。當樣本數為 25,母體分配為常 態,樣本標準差為6歲,求該雜誌讀者平均年齡的95%信賴區間。 〈台北合經》
台北市某大廈的防盜警報響時,第一保全公司有下列二種假設決策:
⑴一切安好,僅防盜設備線路受到干擾,所以不必派人處理,
(中原企管)